Artificial Immune System Based Local Search for Solving Multi-Objective Design Problems
نویسندگان
چکیده
منابع مشابه
A Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملSolving multi-objective team orienteering problem with time windows using adjustment iterated local search
One of the problems tourism faces is how to make itineraries more effective and efficient. This research has solved the routing problem with the objective of maximizing the score and minimizing the time needed for the tourist’s itinerary. Maximizing the score means collecting a maximum of various kinds of score from each destination that is visited. The profits differ according to whether those...
متن کاملProviding a Method for Solving Interval Linear Multi-Objective Problems Based on the Goal Programming Approach
Most research has focused on multi-objective issues in its definitive form, with decision-making coefficients and variables assumed to be objective and constraint functions. In fact, due to inaccurate and ambiguous information, it is difficult to accurately identify the values of the coefficients and variables. Interval arithmetic is appropriate for describing and solving uncertainty and inaccu...
متن کاملArtificial Immune System for Solving Constrained Optimization Problems
In this paper, we present an artificial immune system (AIS) based on the CLONALG algorithm for solving constrained (numerical) optimization problems. We develop a new mutation operator which produces large and small step sizes and which aims to provide better exploration capabilities. We validate our proposed approach with 13 test functions taken from the specialized literature and we compare o...
متن کاملAn evolutionary artificial immune system for multi-objective optimization
In this paper, an evolutionary artificial immune system for multi-objective optimization which combines the global search ability of evolutionary algorithms and immune learning of artificial immune systems is proposed. A new selection strategy is developed based upon the concept of clonal selection principle to maintain the balance between exploration and exploitation. In order to maintain a di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Neural Networks and Applications
سال: 2017
ISSN: 2469-7400
DOI: 10.11648/j.ajnna.20170303.11